[8.4: SOLVING SPECIAL SYSTEMS] ${ }_{1}$

Write your questions here!

We learned 3 different ways to solve linear systems of equations: graphing, substitution and elimination. But sometimes, weird things can happen:

Examples:

Solve each linear system by graphing:

1. $y=1 / 2 x-4$
$y=1 / 2 x+2$
2. $5 x+3 y=6$
$3 y=-5 x-3$

Possible Outcomes When Solving by Graphing

CONCEPT SUMMARY

For Your Notebook

Number of Solutions of a Linear System

The lines intersect.
The lines have different slopes.

No solution

The lines are parallel.
The lines have the same slope and different y-intercepts.

Infinitely many solutions

The lines coincide.
The lines have the same slope and the same y-intercept.

You try! Solve each linear system by graphing. (Be sure to solve for y first!)
3. $y=3 x-6$
$y-3 x=1$
4. $y=4 x-1$
$-2 y=-8 x+2$

So what does this look like when solving by substitution and elimination?

Solve by substitution:
Solve by elimination:
5. $-16 x+2 y=-2$
$y=8 x-1$
6. $-18 x+64=24$
$3 x-y=-2$

		POSSIBLE OUTCOMES		
		No Solution	1 Unique Solution	Infinitely Many Solutions
	Graphing	Parallel Lines	Lines Intersect Once	Both Lines are the same when Graphed
	Substitution or Elimination	Variables Cancel; Sides Not Equal	Each Variable Has One Solution	Variables Cancel; Sides are Equal

Solve each system by graphing.

1) $y=-x-4$
$y=x-2$

$$
\text { 3) } \begin{aligned}
x+y & =3 \\
x+y & =-1
\end{aligned}
$$

2) $y=\frac{1}{2} x+2$
$y=\frac{1}{2} x-3$

4) $2 x-y=-4$
$2 x-y=-2$

Solve each system by elimination.

5) $-3 x+7 y=-2$
$6 x-14 y=4$
6) $\begin{aligned} & 16 x-4 y=-4 \\ & -8 x+y=-3\end{aligned}$
$-8 x+y=-3$
7) $9 x+15 y=-12$
$-3 x-5 y=7$
8) $-5 x-4 y=-1$
$10 x+8 y=2$

Solve each system by substitution.

9) $12 x-2 y=3$
$y=6 x-2$
10) $y=3 x+21$
$-9 x+3 y=63$
11) $3 x-6 y=-6$
$y=x-2$
12) $y=-8 x-1$ $24 x+3 y=-3$

[8.4: SOLVING SPECIAL SYSTEMS] 5

Application and Extension

1. Solving Linear Systems Solve the linear system using graphing, substitution or elimination.

$$
\begin{gathered}
x+3 y=-1 \\
-2 x-6 y=8
\end{gathered}
$$

Solution
2. Sully is approached by students to help make some crafts for a fundraiser.
He decides on helping out by selling his two favorite crafts, Allgebracelete and MathemagicMarkers, at two big upcoming gatherings.

Event	zllybrroelds sold	Mathemagic- Markers sold	Total Amount of Money Collected
K-Town Valentine's Day Dance	9	3	$\$ 27$
DoDDS-E Cheerleading Tournament	12	4	$\$ 36$

Let $a=$ the price of an zllyebracelet Let $m=$ the price of a Mathemagic-Marker
Take the information in the table and write two equations that represent the income from Sully's fundraising crafts. Then, solve the linear system using graphing, substitution or elimination to find the cost of each craft.

Equation \#1: \qquad (Representing income from K-Town dance)

Equation \#2: \qquad (Representing income from Tournament)
$2 \pi \pi$

Find TWO different possible solutions to this problem:
Cost of Allyelracedds \qquad Cost of $\begin{gathered}1 l y \text { gebraceld } \\ \text { s }\end{gathered}$ \qquad
Cost of Mathemagic-Markers \qquad Cost of Mathemagic-Markers \qquad

Coming Up: Rewrite each using an exponent.

1. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=$ \qquad 2. $10 \cdot 10 \cdot 10 \cdot 10=$ \qquad
2. $x \cdot x \cdot x=$ \qquad

Quick Review: Find the equation of the line that passes through the given points.

1. $(-2,3) ;(-2,-3)$
2. $(2,3) ;(-5,3)$
3. $(-1,3) ;(0,4)$
