A system of linear inequalities in two variables, or simply a system of linear inequalities, consists of two or more linear inequalities in the same variables. For example:

\[x - y > 7 \]
\[2x + y < 8 \]

The solution of a system of inequalities is an ordered pair that is a solution of each inequality in the system.

Example 1: Is (3, -5) a solution to the system of inequalities above?
How about (5, -2)?

Example 2: Solve the following system of inequalities by graphing:

\[3x + 2y \leq 6 \]
\[x < 2 \]
Example 3:

Solve the following system of inequalities by graphing:

\[y \geq -1 \]
\[x > -2 \]
\[x + 2y \leq 4 \]

Example 4:

Is (0, -1) a solution to the following system of inequalities?

What about (2, -2)?

What about (2, -5)?

What about (3, 0)?

Example 5:

\[y > \frac{1}{2}x + 1 \]
\[y \leq \frac{1}{2}x - 2 \]
Solve each system of inequalities by graphing!

1) \[y \geq -3x - 2 \]
\[y < x + 2 \]

2) \[y \geq -\frac{1}{2}x - 2 \]
\[y < -\frac{5}{2}x + 2 \]

3) \[y \geq 1 \]
\[y \geq x - 1 \]

4) \[y \leq x - 1 \]
\[x \leq 3 \]
5) \(x - 2y \geq 2 \)
\(x - 2y < -4 \)

6) \(5x + 3y > -9 \)
\(x + 3y \leq 3 \)

7) \(y \leq \frac{-5}{4}x - 8 \)
\(y < \frac{-5}{4}x + 2 \)

8) \(y \leq \frac{8}{7}x + 7 \)
\(y \geq \frac{8}{7}x + 2 \)

9) Is \((0, 7)\) a solution to question number 8 above?
1. Solve the following system of inequalities.

\[y \geq -2 \]
\[2x + 3y > -6 \]

2. Is the point (0, -2) a solution of this system?
3. **ALGEBUSINESS** Sully receives a 40 dollar gift certificate for the jewelry shop *Brust’s Algebling*. An *Algebracelet* costs $5 while a *Calcunecklus* costs $8. Sully wants at least one of each.

Let \(a = \text{the number of Algebracelets} \) and \(c = \text{the number of Calcuneckluses} \)

a. Tell what each of the following inequalities means in the context of this problem:

\[a \geq 1 \]
\[c \geq 1 \]
\[5a + 8c \leq 40 \]

b. Graph all 3 inequalities.

(Hint: Solve \(5a + 8c \leq 40 \) for \(c \) by subtracting \(5a \) from each side and dividing each term by 8. Your inequality is now very similar to \(y = mx + b \).)

c. Tell one point that is a solution to this system of inequalities.

c. Tell one point that is not a solution to this system of inequalities.

Coming Up: Rewrite each using exponents.

1. \(9 \cdot 9 \cdot 9 = \) ______
 2. \(1 \cdot 1 \)
 = ______
 3. \((xy) \cdot (xy) \cdot (xy) \cdot (xy) = \) _____

Quick Review: Find the slope of the line that passes through the given points.

1. \((-2, 3); (-2, 11)\)
2. \((6, 3); (-5, 9)\)
3. \((4, 7/6); (-736, 7/6)\)